More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes
نویسندگان
چکیده
The human gut is colonized with a myriad of microbes, with substantial interpersonal variation. This complex ecosystem is an integral part of the gastrointestinal tract and plays a major role in the maintenance of homeostasis. Its dysfunction has been correlated to a wide array of diseases, but the understanding of causal mechanisms is hampered by the limited amount of cultured microbes, poor understanding of phenotypes, and the limited knowledge about interspecies interactions. Genome-scale metabolic models (GEMs) have been used in many different fields, ranging from metabolic engineering to the prediction of interspecies interactions. We provide showcase examples for the application of GEMs for gut microbes and focus on (i) the prediction of minimal, synthetic, or defined media; (ii) the prediction of possible functions and phenotypes; and (iii) the prediction of interspecies interactions. All three applications are key in understanding the role of individual species in the gut ecosystem as well as the role of the microbiota as a whole. Using GEMs in the described fashions has led to designs of minimal growth media, an increased understanding of microbial phenotypes and their influence on the host immune system, and dietary interventions to improve human health. Ultimately, an increased understanding of the gut ecosystem will enable targeted interventions in gut microbial composition to restore homeostasis and appropriate host-microbe crosstalk.
منابع مشابه
Human gut microbiota and healthy aging: Recent developments and future prospective
The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial ...
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملSystematic prediction of health-relevant human-microbial co-metabolism through a computational framework
The gut microbiota is well known to affect host metabolic phenotypes. The systemic effects of the gut microbiota on host metabolism are generally evaluated via the comparison of germfree and conventional mice, which is impossible to perform for humans. Hence, it remains difficult to determine the impact of the gut microbiota on human metabolic phenotypes. We demonstrate that a constraint-based ...
متن کاملSystems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut
The human gut microbiota consists of ten times more microorganisms than there are cells in our body, processes otherwise indigestible nutrients, and produces important energy precursors, essential amino acids, and vitamins. In this study, we assembled and validated a genome-scale metabolic reconstruction of Bacteroides thetaiotaomicron (iAH991), a prominent representative of the human gut micro...
متن کاملDysbiotic Events in Gut Microbiota: Impact on Human Health
The human body is colonized by a large number of microbes coexisting peacefully with their host. The most colonized site is the gastrointestinal tract (GIT). More than 70% of all the microbes in the human body are in the colon. The microorganism population is 10 times larger of the total number of our somatic and germ cells. Two bacterial phyla, accounting for more than 90% of the bacterial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017